Tuesday, June 30, 2020

The Quick Way to Learn Java GUI with MySQL and SQLite


This hands-on introduction to database programming using Java is ideal for people with little or no programming experience. The goal of this concise book is not just to teach you Java, but to help you think like a programmer. Each brief chapter covers the material for one week of a college course to help you practice what you've learned. As you would expect, this book shows how to build from scratch two different databases: MySQL and SQLite using Java. In designing a GUI and as an IDE, you will make use of the NetBeans tool.

In the first chapter, you will learn: How to install NetBeans, JDK 11, and MySQL Connector/J; How to integrate external libraries into projects; How the basic MySQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done.

In the second chapter, you will study: Creating the initial three table projects in the school database: Teacher table, TClass table, and Subject table; Creating database configuration files; Creating a Java GUI for viewing and navigating the contents of each table; Creating a Java GUI for inserting and editing tables; and Creating a Java GUI to join and query the three tables.

In the third chapter, you will learn: Creating the main form to connect all forms; Creating a project will add three more tables to the school database: the Student table, the Parent table, and Tuition table; Creating a Java GUI to view and navigate the contents of each table; Creating a Java GUI for editing, inserting, and deleting records in each table; Creating a Java GUI to join and query the three tables and all six.

In chapter four, you will study how to query the six tables.

In chapter five, you will be shown how to create SQLite database and tables with Java. In chapter six, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. Digital image techniques to extract image features used in this chapted are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching.

In chapter seven, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo.

In chapter eight, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table.

In chapter nine, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables.

In chapter ten, you will add two tables: Victim and Case_File. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File has seven columns: case_file_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.


Finally, this book is hopefully useful and can improve database programming skills for every Java/MySQL/SQLite pogrammer.

The Quick Tutorial to Learn Database Programming Using Python GUI with MariaDB and PostgreSQL

In this book, you will create two MariaDB and PostgreSQL driven projects using PyQt. The step-by-step guide in this book is expected to help the reader's confidence to become a programmer who can solve database programming problems. A progressive project is provided to demonstrate how to apply the concepts of MariaDB and PostgreSQL using Python.

In second chapter, you will learn PyQt that consists of a number of Python bindings for cross-platform applications that combine all the strengths of Qt and Python. By using PyQt, you can include all Qt libraries in Python code, so you can write GUI applications in Python. In other words, you can use PyQt to access all the features provided by Qt through Python code. Because PyQt depends on the Qt libraries at run time, you need to install PyQt.

In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables.

In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In this chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables.

In chapter five, you will create dan configure PotgreSQL database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table.

In chapter six, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table.


In chapter seven, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables.
  

In chapter eight, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.

JAVA GUI WITH MYSQL: DATABASE AND IMAGE PROCESSING


In this book, you will learn how to build from scratch a criminal records management database system using Java / MySQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics.

Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching.

In the first chapter, you will be shown the number of devices needed to be downloaded and installed. You need to know how to add external libraries to the NetBeans environment. These tools are needed so that you can run the Java scripts.

In the second chapter, you will be taught how to create Crime database and its tables. In third chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI.

In the fourth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo.

In the fifth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table.

In the sixth chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables.

In the seventh chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.


Finally, this book is hopefully useful for you.

Tuesday, June 2, 2020

MATLAB GUI UNTUK PENGOLAHAN SINYAL DIGITAL




Buku 268 halaman ini ini cocok untuk memenuhi kebutuhan para mahasiswa, praktisi, dosen, maupun periset yang ingin terjun-langsung dalam memahami pengolahan sinyal digital. Pembahasan di dalam buku ini langsung diaplikasikan dalam bentuk GUI MATLAB, yang bisa dipakai untuk kepentingan praktis maupun penelitian.


Buku ini hanya difokuskan pada empat pembahasan utama dalam pemrosesan sinyal digital: runtun diskret, analisis Fourier waktu diskret, transformasi Fourier diskret, dan tapis digital. Keempat topik ini merupakan pilar utama dalam pengolahan sinyal digital.


Penulis percaya bahwa buku ini, meski sederhana, akan berguna bagi pembaca. Selamat membaca.




Balige, 1 Juni 2020
Penulis


Vivian Siahaan
Balige Publishing


Jika Anda berminat silahkan mengunjungi LINK INI