Thursday, March 28, 2024

FRAME ANALYSIS AND PROCESSING IN DIGITAL VIDEO USING PYTHON AND TKINTER by Vivian Siahaan & Rismon Hasiholan Sianipar

 


 

This book is on the writing process by Balige Publishing Team.

Vivian Siahaan and Rismon Hasiholan Sianipar

Balige City

 

          Amazon KDP

          Google Books

         KOBO STORE


The first project in chapter one which is Canny Edge Detector presented here is a graphical user interface (GUI) application built using Tkinter in Python. This application allows users to open video files (of formats like mp4, avi, or mkv) and view them along with their corresponding Canny edge detection frames. The application provides functionalities such as playing, pausing, stopping, navigating through frames, and jumping to specific times within the video.

This second project in chapter one implements a graphical user interface (GUI) application for performing edge detection using the Prewitt operator on videos. The purpose of the code is to provide users with a tool to visualize videos, apply the Prewitt edge detection algorithm, and interactively control playback and visualization parameters.

The third project in chapter one which is "Sobel Edge Detector" is implemented in Python using Tkinter and OpenCV serves as a graphical user interface (GUI) for viewing and analyzing videos with real-time Sobel edge detection capabilities.

The "Frei-Chen Edge Detection" project as fourth project in chapter one is a graphical user interface (GUI) application built using Python and the Tkinter library. The application is designed to process and visualize video files by detecting edges using the Frei-Chen edge detection algorithm.

The "KIRSCH EDGE DETECTOR" project as the fifth project in chapter one is a Python application built using Tkinter, OpenCV, and NumPy libraries for performing edge detection on video files. It handles the visualization of the edge-detected frames in real-time. It retrieves the current frame from the video, applies Gaussian blur for noise reduction, performs Kirsch edge detection, and applies thresholding to obtain the binary edge image. The processed frame is then displayed on the canvas alongside the original video.

This "SCHARR EDGE DETECTOR" as the sixth project in chapter one is creating a graphical user interface (GUI) to visualize edge detection in videos using the Scharr algorithm. It allows users to open video files, play/pause video playback, navigate frame by frame, and apply Scharr edge detection in real-time.

The first project in chapter two is designed to provide a user-friendly interface for processing video frames using Gaussian filtering techniques. It encompasses various components and functionalities tailored towards efficient video analysis and processing. The GaussianFilter Class serves as the backbone of the application, managing GUI initialization and video processing functionalities. The GUI layout is constructed with Tkinter widgets, comprising two main panels for video display and control buttons. Key functionalities include opening video files, controlling playback, adjusting zoom levels, navigating frames, and interacting with video frames via mouse events. Additionally, users can process frames using OpenCV for Gaussian filtering to enhance video quality and reduce noise. Time navigation functionality allows users to jump to specific time points in the video. Moreover, the application supports multiple instances for simultaneous video analysis in independent windows. Overall, this project offers a comprehensive toolset for video analysis and processing, empowering users with an intuitive interface and diverse functionalities.

The second project in chapter two presents a Tkinter application tailored for video frame filtering utilizing a mean filter. It offers comprehensive functionalities including opening, playing/pausing, and stopping video playback, alongside options to navigate to previous and next frames, jump to specified times, and adjust zoom scale. Displayed on separate canvases, the original and filtered video frames are showcased distinctly. Upon video file opening, the application utilizes imageio.get_reader() for video reading, while play_video() and play_filtered_video() methods handle frame display....


DIGITAL VIDEO PROCESSING PROJECTS USING PYTHON AND TKINTER Kindle Edition by Vivian Siahaan (Author), Rismon Hasiholan Sianipar (Author) Format: Kindle Edition

 



This book is on the writing process by Balige Publishing Team.

Vivian Siahaan and Rismon Hasiholan Sianipar

Balige City


Amazon KDP

Google Book

Kobo Store

The first project is a video player application with an additional feature to compute and display the MD5 hash of each frame in a video. The user interface is built using Tkinter, a Python GUI toolkit, providing buttons for opening a video file, playing, pausing, and stopping the video playback. Upon opening a video file, the application displays metadata such as filename, duration, resolution, FPS, and codec information in a table. The video can be navigated using a slider to seek to a specific time point.


When the video is played, the application iterates through each frame, extracts it from the video clip, calculates its MD5 hash, and displays the frame along with its histogram and MD5 hash. The histogram represents the pixel intensity distribution of each color channel (red, green, blue) in the frame. The computed MD5 hash for each frame is displayed in a label below the video frame. Additionally, the frame hash along with its index is saved to a text file for further analysis or verification purposes.

The class encapsulates the functionality of the application, providing methods for opening a video file, playing and controlling video playback, updating metadata, computing frame histogram, plotting histogram, calculating MD5 hash for each frame, and saving frame hashes to a file. The main function initializes the Tkinter root window, instantiates the class, and starts the Tkinter event loop to handle user interactions and update the GUI accordingly.

The second project is a video player application with additional features for frame extraction and visualization of RGB histograms for each frame. Developed using Tkinter, a Python GUI toolkit, the application provides functionalities such as opening a video file, playing, pausing, and stopping video playback. The user interface includes buttons for controlling video playback, a combobox for selecting zoom scale, an entry for specifying a time point to jump to, and buttons for frame extraction and opening another instance of the application.

Upon opening a video file, the application loads it using the imageio library and displays the frames in a canvas. Users can play, pause, and stop the video using dedicated buttons. The zoom scale can be adjusted, and the video can be navigated using scrollbar or time entry. Additionally, users can extract a specific frame by entering its frame number, which opens a new window displaying the extracted frame along with its RGB histograms and MD5 hash value.

The class encapsulates the application's functionalities, including methods for opening a video file, playing/pausing/stopping video, updating zoom scale, displaying frames, handling mouse events for dragging and scrolling, jumping to a specified time, and extracting frames. The main function initializes the Tkinter root window and starts the application's event loop to handle user interactions and update the GUI accordingly. Users can also open multiple instances of the application simultaneously to work with different video files concurrently.

The third project is a GUI application built with Tkinter for calculating hash values of video frames and displaying them in a listbox. The interface consists of different frames for video display and hash values, along with buttons for controlling video playback, calculating hashes, saving hash values to a file, and opening a new instance of the application. Users can open a video file using the "Open Video" button, after which they can play, pause, or stop the video using corresponding buttons.

The fourth project is a GUI application developed using Tkinter for analyzing video frames through frame hashing and histogram visualization. The interface presents a canvas for displaying the video frames along with control buttons for video playback, frame extraction, and ...