This content is powered by Balige Publishing. Visit this link (collaboration with Rismon Hasiholan Sianipar) PART 1 PART 2 PART 3 PART 4
In this tutorial, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository.
Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn
Step 1: In this tutorial, you will use the from sklearn.linear_model class as well as the familiar fit() method to train the model on all three classes in the standardized flower training dataset:
Step 2: Run the script to see decision regions as shown in Figure below.
Step 3: Open gui_scikit.ui form that you created before. Modify listAlgorithm widget, so that it has the third item as shown in Figure below.
Step 4: Add this code to algo_NN() function so that when user choose Support Vector Machine (SVM) from listAlgorithm widget, it will perform SVM classification:
Step 5: Define accuracy_svm() to calculate accuracy of SVM model:
Step 6: Run Scikit_Classifier.py, choose Support Vector Machine (SVM) from list widget, and set data ratio 0.3 and learning rate 0.01 to see the result as shown in Figure below.
In this tutorial, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository.
Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn
Step 1: In this tutorial, you will use the from sklearn.linear_model class as well as the familiar fit() method to train the model on all three classes in the standardized flower training dataset:
#SVM_Scikit_ex.py from sklearn import datasets import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier from sklearn.pipeline import make_pipeline from sklearn.metrics import accuracy_score from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt def plot_classifier(X, y, classifier, test_idx=None, resolution=0.01): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.5, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') # highlight test samples if test_idx: # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c='', edgecolor='black', alpha=1.0, linewidth=1, marker='o', s=100, label='test set') #Load data into matrix X and vector y iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target print('Class labels:', np.unique(y)) #print(X) # plot data plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa') plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor') plt.scatter(X[100:150, 0], X[100:150, 1], color='green', marker='x', label='versicolor') plt.xlabel('petal length [cm]') plt.ylabel('petal width [cm]') plt.legend(loc='upper left') plt.show() #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Trains logistic regression model svm_clsfr = make_pipeline(StandardScaler(), SGDClassifier('hinge',max_iter=1000,eta0=0.01, tol=1e-3)) svm_clsfr.fit(X_train_std, y_train) #Makes prediction y_pred = svm_clsfr.predict(X_test_std) print('Misclassified samples: %d' % (y_test != y_pred).sum()) #Calculates classification accuracy print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_classifier(X_combined_std, y_combined, classifier=svm_clsfr) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.show()
Step 2: Run the script to see decision regions as shown in Figure below.
Step 3: Open gui_scikit.ui form that you created before. Modify listAlgorithm widget, so that it has the third item as shown in Figure below.
Step 4: Add this code to algo_NN() function so that when user choose Support Vector Machine (SVM) from listAlgorithm widget, it will perform SVM classification:
if strList == 'Support Vector Machine (SVM)': #Trains SVM model svm = make_pipeline(StandardScaler(), \ SGDClassifier('hinge',max_iter=iterNum,eta0=learningRate,\ tol=1e-3)) svm.fit(X_train_std, y_train) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) strTitle = 'SVM Classifier with ' + \ str(ratio*100) + '% Data Ratio ' self.display_decision(X=X_combined_std, y=y_combined, \ classifier=svm, axisWidget=self.widgetDecision.canvas, \ title=strTitle, test_idx=range(105, 150)) #display graph self.graph(self.widgetEpoch.canvas, self.accuracy_svm)
Step 5: Define accuracy_svm() to calculate accuracy of SVM model:
def accuracy_svm(self,ratio,learningRate): #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(self.X, \ self.y, test_size=ratio, random_state=1, stratify=self.y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Trains logistic regression model svm = make_pipeline(StandardScaler(), \ SGDClassifier('hinge',max_iter=1000,eta0=learningRate, \ tol=1e-3)) svm.fit(X_train_std, y_train) #Makes prediction y_pred = svm.predict(X_test_std) #Calculates classification accuracy acc = round(100*accuracy_score(y_test, y_pred),1) return acc
Step 6: Run Scikit_Classifier.py, choose Support Vector Machine (SVM) from list widget, and set data ratio 0.3 and learning rate 0.01 to see the result as shown in Figure below.
Then choose data ratio 0.5 and learning rate 0.05. The result is shown in Figure below.
Below is the full script of Scikit_Classifier.py so far:
Learn From Scratch Neural Networks Using PyQt: Part 6
Below is the full script of Scikit_Classifier.py so far:
#Scikit_Classifier.py from PyQt5.QtWidgets import * from PyQt5.uic import loadUi from matplotlib.backends.backend_qt5agg import (NavigationToolbar2QT as NavigationToolbar) from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score from sklearn.linear_model import SGDClassifier from sklearn.pipeline import make_pipeline from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd class DemoGUIScikit(QMainWindow): def __init__(self): QMainWindow.__init__(self) loadUi("gui_scikit.ui",self) self.setWindowTitle("GUI Demo of Classifier Using Scikit-Learn") self.addToolBar(NavigationToolbar(self.widgetData.canvas, self)) self.gbNNParam.setEnabled(False) self.listAlgorithm.setEnabled(False) self.pbLoad.clicked.connect(self.load_data) self.sbIter.valueChanged.connect(self.algo_NN) self.dsbRate.valueChanged.connect(self.algo_NN) self.dsbRatio.valueChanged.connect(self.algo_NN) self.listAlgorithm.setEnabled(False) self.listAlgorithm.clicked.connect(self.algo_NN) self.listAlgorithm.setCurrentRow(0) self.sbDepth.valueChanged.connect(self.algo_NN) self.sbNeighbor.valueChanged.connect(self.algo_NN) def load_data(self): #Load data into matrix X and vector y iris = datasets.load_iris() self.X = iris.data[:, [2, 3]] self.y = iris.target self.display_data(self.X, self.widgetData.canvas) self.gbNNParam.setEnabled(True) self.pbLoad.setEnabled(False) self.listAlgorithm.setEnabled(True) def display_data(self,X,axisWidget): # plot data axisWidget.axis1.clear() axisWidget.axis1.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa') axisWidget.axis1.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor') axisWidget.axis1.scatter(X[100:150, 0], X[100:150, 1], color='green', marker='x', label='virginica') axisWidget.axis1.set_xlabel('Petal length [cm]') axisWidget.axis1.set_ylabel('petal Width [cm]') axisWidget.axis1.legend(loc='upper left') title = 'Petal length and Petal width [cm]' axisWidget.axis1.set_title(title) axisWidget.draw() #displays data on table widget self.display_table() #Displays decision regions self.algo_NN() def display_table(self): data = datasets.load_iris() df = pd.DataFrame(np.column_stack((data.data, data.target)), columns = data.feature_names+['target']) df['label'] = df.target.replace(dict(enumerate(data.target_names))) # show data on table widget self.write_df_to_qtable(df,self.tableData) self.tableData.setHorizontalHeaderLabels(data.feature_names) styleH = "::section {""background-color: cyan; }" self.tableData.horizontalHeader().setStyleSheet(styleH) styleV = "::section {""background-color: red; }" self.tableData.verticalHeader().setStyleSheet(styleV) # Takes a df and writes it to a qtable provided. df headers become qtable headers @staticmethod def write_df_to_qtable(df,table): table.setRowCount(df.shape[0]) table.setColumnCount(df.shape[1]) # getting data from df is computationally costly so convert it to array first df_array = df.values for row in range(df.shape[0]): for col in range(df.shape[1]): table.setItem(row, col, QTableWidgetItem(str(df_array[row,col]))) def display_decision(self, X, y, classifier, axisWidget, title, test_idx=None, resolution=0.01): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) axisWidget.axis1.clear() axisWidget.axis1.contourf(xx1, xx2, Z, alpha=0.5, cmap=cmap) axisWidget.axis1.set_xlim(xx1.min(), xx1.max()) axisWidget.axis1.set_ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): axisWidget.axis1.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') # highlight test samples if test_idx: # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] axisWidget.axis1.scatter(X_test[:, 0], X_test[:, 1], c='', edgecolor='black', alpha=1.0, linewidth=1, marker='o', s=100, label='test set') axisWidget.axis1.set_xlabel('petal length [standardized]') axisWidget.axis1.set_ylabel('petal width [standardized]') axisWidget.axis1.set_label('petal width [standardized]') axisWidget.axis1.legend(loc='upper left') axisWidget.axis1.set_title(title) axisWidget.draw() def algo_NN(self): self.sbIter.setEnabled(True) self.dsbRate.setEnabled(True) self.sbDepth.setEnabled(False) self.sbNeighbor.setEnabled(False) iterNum = self.sbIter.value() ratio = self.dsbRatio.value() self.dsbRate.setDecimals(5) learningRate = self.dsbRate.value() depth = self.sbDepth.value() neighbor = self.sbDepth.value() #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=ratio, random_state=1, stratify=self.y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) item = self.listAlgorithm.currentItem() strList = item.text() if strList == 'Perceptron': #Trains perceptron ppn = Perceptron(max_iter=iterNum, eta0=learningRate, random_state=1) ppn.fit(X_train_std, y_train) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) strTitle = 'Perceptron Classifier with ' + str(ratio*100) + '% Data Ratio ' strTitle += ' and Learning Rate ' +str(learningRate) self.display_decision(X=X_combined_std, y=y_combined, classifier=ppn, \ axisWidget=self.widgetDecision.canvas, \ title=strTitle, test_idx=range(105, 150)) #display graph self.graph(self.widgetEpoch.canvas, self.accuracy_perceptron) if strList == 'Logistic Regression': #Trains logistic regression model lgr = make_pipeline(StandardScaler(), SGDClassifier('log',max_iter=iterNum,eta0=learningRate, tol=1e-3)) #lgr = LogisticRegression(C=100.0, random_state=1) lgr.fit(X_train_std, y_train) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) strTitle = 'Logistic Regression Classifier with ' + str(ratio*100) + '% Data Ratio ' self.display_decision(X=X_combined_std, y=y_combined, classifier=lgr, \ axisWidget=self.widgetDecision.canvas, \ title=strTitle, test_idx=range(105, 150)) #display graph self.graph(self.widgetEpoch.canvas, self.accuracy_logistic) if strList == 'Support Vector Machine (SVM)': #Trains SVM model svm = make_pipeline(StandardScaler(), SGDClassifier('hinge',max_iter=iterNum,eta0=learningRate, tol=1e-3)) svm.fit(X_train_std, y_train) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) strTitle = 'SVM Classifier with ' + str(ratio*100) + '% Data Ratio ' self.display_decision(X=X_combined_std, y=y_combined, classifier=svm, \ axisWidget=self.widgetDecision.canvas, \ title=strTitle, test_idx=range(105, 150)) #display graph self.graph(self.widgetEpoch.canvas, self.accuracy_svm)
def accuracy_perceptron(self,ratio,learningRate): #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=ratio, random_state=1, stratify=self.y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Trains perceptron ppn = Perceptron(max_iter=100, eta0=learningRate, random_state=1) ppn.fit(X_train_std, y_train) #Makes prediction y_pred = ppn.predict(X_test_std) #Calculates classification accuracy acc = round(100*accuracy_score(y_test, y_pred),1) return acc def accuracy_logistic(self,ratio,learningRate): #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=ratio, random_state=1, stratify=self.y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Trains logistic regression model lgr = make_pipeline(StandardScaler(), SGDClassifier('log',max_iter=1000,eta0=learningRate, tol=1e-3)) lgr.fit(X_train_std, y_train) #Makes prediction y_pred = lgr.predict(X_test_std) #Calculates classification accuracy acc = round(100*accuracy_score(y_test, y_pred),1) return acc def accuracy_svm(self,ratio,learningRate): #Splits the dataset into separate training and test datasets X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=ratio, random_state=1, stratify=self.y) #standardizes the features using the StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) #Trains logistic regression model svm = make_pipeline(StandardScaler(), SGDClassifier('hinge',max_iter=1000,eta0=learningRate, tol=1e-3)) svm.fit(X_train_std, y_train) #Makes prediction y_pred = svm.predict(X_test_std) #Calculates classification accuracy acc = round(100*accuracy_score(y_test, y_pred),1) return acc
def graph(self,axisWidget,func): ratio = self.dsbRatio.value() learningRate = self.dsbRate.value() if (ratio+0.4) < 1 : rangeDR = [ratio,ratio+0.1,ratio+0.2,ratio+0.3,ratio+0.4] else : rangeDR = [ratio-0.4,ratio-0.3,ratio-0.2,ratio-0.1,ratio] labels = [str(round(rangeDR[0],2)), str(round(rangeDR[1],2)), \ str(round(rangeDR[2],2)), str(round(rangeDR[3],2)), \ str(round(rangeDR[4],2))] LR01 = [] for i in rangeDR: acc = func(i,learningRate) LR01.append(acc) LR001 = [] for i in rangeDR: acc = func(i,learningRate+0.1) LR001.append(acc) LR0001 = [] for i in rangeDR: acc = func(i,learningRate+0.25) LR0001.append(acc) x = np.arange(len(labels)) # the label locations width = 0.3 # the width of the bars strLabel1 = 'LR=' + str(round(learningRate, 2)) strLabel2 = 'LR=' + str(round(learningRate+0.1, 2)) strLabel3 = 'LR=' + str(round(learningRate+0.25, 2)) axisWidget.axis1.clear() rects1 = axisWidget.axis1.bar(x - width/2, LR01, width, label=strLabel1) rects2 = axisWidget.axis1.bar(x + width/2, LR001, width, label=strLabel2) rects3 = axisWidget.axis1.bar(x + 3*width/2, LR0001, width, label=strLabel3) # Add some text for labels, title and custom x-axis tick labels, etc. axisWidget.axis1.set_ylabel('Accuracy(%)') axisWidget.axis1.set_xlabel('Data Ratio (DR)') axisWidget.axis1.set_title('Accuracy by data ratio (DR) and learning rate (LR)') axisWidget.axis1.set_xticks(x) axisWidget.axis1.set_xticklabels(labels) axisWidget.axis1.legend() #axisWidget.axis1.set_facecolor('xkcd:banana') self.autolabel(rects1,axisWidget.axis1) self.autolabel(rects2,axisWidget.axis1) self.autolabel(rects3,axisWidget.axis1) axisWidget.draw() def autolabel(self,rects,axisWidget): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() axisWidget.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom')
if __name__ == '__main__': import sys app = QApplication(sys.argv) ex = DemoGUIScikit() ex.show() sys.exit(app.exec_())
Learn From Scratch Neural Networks Using PyQt: Part 6
No comments:
Post a Comment