Sunday, February 21, 2021

SINYAL DAN CITRA DIGITAL dengan PYTHON GUI


Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books.

Pada buku ini, Anda akan belajar bagaimana menggunakan OpenCV, NumPy dan sejumlah pustaka lain untuk melakukan pemrosesan sinyal, pemrosesan citra, deteksi objek, dan ekstraksi fitur dengan memanfaatkan Python GUI (PyQt). Anda akan belajar cara memfilter sinyal, mendeteksi tepi dan segmen, dan menekan derau pada citra dengan memanfaatkan PyQt. Anda juga akan belajar cara mendeteksi objek (wajah, mata, dan mulut) menggunakan Haar Cascades dan cara mendeteksi fitur pada citra menggunakan Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), dan Features from Accelerated Uji Segmen (FAST).

Pada bab 1, Anda akan mempelajari secara langkah demi langkah: membuat aplikasi gui sederhana; menggunakan tombol radio; mengelompokkan tombol radio; menggunakan widget kotak centang; menggunakan dua grup kotak centang; memahami sinyal dan slot; mengonversi jenis data; menggunakan widget spin box; menggunakan scrollbar dan slider; menggunakan list widget; menggunakan kotak kombo; dan menggunakan widget Table.

Pada bab 2, Anda akan mempelajari secara langkah demi langkah: membuat grafik garis sederhana; membuat grafik garis sederhana dengan python gui; membuat grafik garis sederhana dengan python gui: bagian 2; membuat dua atau lebih banyak grafik di sumbu yang sama;membuat dua sumbu dalam satu kanvas; menggunakan dua widget;menggunakan dua widget, masing-masing memiliki dua sumbu; menggunakan sumbu dengan tingkat opacity tertentu; memilih warna garis dari combo box; menghitung fast fourier transform; membuat gui untuk FFT; membuat gui untuk FFT dengan beberapa sinyal input lain; membuat gui untuk sinyal bising; membuat gui untuk penapisan sinyal berderau; dan membuat gui untuk penapisan sinyal wav.


Pada bab 3, Anda akan mempelajari secara langkah demi langkah: mengkonversi citra RGB menjadi grayscale; mengubah citra RGB menjadi citra YUV; mengkonversi citra RGB menjadi citra HSV; memfilter citra; menampilkan histogram citra; menampilkan histogram citra tertapis; memfilter citra dengan memanfaatkan opsi pada kotak centang; menerapkan ambang batas citra; dan menerapkan ambang batas citra adaptif.


Pada bab 4, Anda akan mempelajari secara langkah demi langkah: membangkitkan dan menampilkan citra berderau; menerapkan deteksi tepi pada citra; menerapkan segmentasi citra menggunakan algoritma multiple thresholding dan k-means; dan menerapkan penekanan derau citra.

Pada bab 5, Anda akan mempelajari secara langkah demi langkah: mendeteksi wajah, mata, dan mulut menggunakan haar cascades; mendeteksi wajah menggunakan haar cascades dengan pyqt; mendeteksi mata, dan mulut menggunakan haar cascades dengan pyqt; dan mengekstraksi objek yang terdeteksi.



Pada bab 6, Anda akan mempelajari secara langkah demi langkah: mendeteksi fitur citra menggunakan deteksi harris corner; mendeteksi fitur citra menggunakan deteksi sudut shi-tomasi;  mendeteksi fitur citra menggunakan Scale-Invariant Feature Transform (SIFT); dan mendeteksi fitur citra  menggunakan Features from Accelerated Uji Segmen (FAST).










No comments:

Post a Comment