This Content is supported by BALIGE PUBLISHING. Visit this link
See Part 1 See Part 2
Run main_fft2.py. Click on Noise radio button, then choose one of signals. You will see the noisy version of each signal as shown in figures below.
See Part 1 See Part 2
Tutorial Steps To Create GUI For Noisy Signal
Add two more Radio Button widgets. Set their text properties to Noise and None and set their objectName properties as rbNoise and rbNone. The modified gui_fft.ui is shown in below.
At this point, you need to do some modifications to make efficient code in main_fft.py. Rename it as main_fft2.py.
You need to add two additional parameters in show_fft() function. Those parameters are used to reference QWidget object:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | def show_fft(self, h, qwidget1, qwidget2): wc = float(self.leCutOff.text()) N = int(self.leFFTLength.text()) M = int(self.leSignalRange.text()) wc = wc*pi # widgetFFTAbs # get entire frequency domain w,Hh = signal.freqz(h,1,whole=True, worN=N) wx = fft.fftfreq(len(w)) # shift to center for plotting qwidget1.canvas.axis1.clear() qwidget1.canvas.axis1.plot(w-pi,abs(fft.fftshift(Hh))) qwidget1.canvas.axis1.axis(xmax=pi/2,xmin=-pi/2) qwidget1.canvas.axis1.vlines([-1.1,1.1],0,1.2,\ color='g',lw=2.,linestyle='--',) qwidget1.canvas.axis1.hlines(1,-pi,\ pi,color='g',lw=2.,linestyle='--',) qwidget1.canvas.axis1.annotate(r'$\omega$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=22) qwidget1.canvas.axis1.set_ylabel(r"$|H(\omega)| $",fontsize=22) qwidget1.canvas.axis1.set_title('Absolute FFT Graph') qwidget1.canvas.axis1.set_facecolor('khaki') qwidget1.canvas.axis1.grid() qwidget1.canvas.draw() # widgetFFTLog # get entire frequency domain w,Hh = signal.freqz(h,1,whole=True, worN=N) wx = fft.fftfreq(len(w)) # shift to center for plotting qwidget2.canvas.axis1.clear() qwidget2.canvas.axis1.plot(w-pi,20*log10(abs(fft.fftshift(Hh)))) qwidget2.canvas.axis1.axis(ymin=-40,xmax=pi/2,xmin=-pi/2) qwidget2.canvas.axis1.vlines([-wc,wc],10,\ -40,color='g',lw=2.,linestyle='--',) qwidget2.canvas.axis1.hlines(0,-pi,\ pi,color='g',lw=2.,linestyle='--',) qwidget2.canvas.axis1.annotate(r'$\omega$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=22) qwidget2.canvas.axis1.set_ylabel(r"$20\log_{10}|H(\omega)| $",\ fontsize=18) qwidget2.canvas.axis1.set_title('Log Absolute FFT Graph') qwidget2.canvas.axis1.set_facecolor('khaki') qwidget2.canvas.axis1.grid() qwidget2.canvas.draw() |
Add two more Radio Button widgets. Set their text properties to Noise and None and set their objectName properties as rbNoise and rbNone. The modified gui_fft.ui is shown in below.
You need to use a global variable which will be use as return value in show_graph(), show_chirp(), show_sawtooth(), show_square(), and show_sweep_poly() as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | def show_graph(self): global y wc = float(self.leCutOff.text()) N = int(self.leFFTLength.text()) M = int(self.leSignalRange.text()) wc = wc*pi # widgetSignal n = arange(-M, M) h = wc/pi * sinc(wc*(n)/pi) mpl.style.use('seaborn') # Noise if self.rbNoise.isChecked(): y = y + np.random.randn(len(h)) * 0.1 else: y = h self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.stem(n,y,\ basefmt='r-',use_line_collection=True) self.widgetSignal.canvas.axis1.annotate('$n$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Stem Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | def show_chirp(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) f_start = float(self.leFStart.text()) f_end = float(self.leFEnd.text()) # widgetSignal t = linspace(x_start, x_end, 5001) w = chirp(t, f0=f_start, f1=f_end, t1=10, method='linear') # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t,y,linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Chirp Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | def show_sawtooth(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal t = linspace(x_start, x_end, 5001) w = signal.sawtooth(2 * np.pi * 5 * t) # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y,linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Chirp Graph') self.widgetSignal.canvas.axis1.set_title('Sawtooth Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | def show_square(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal t = linspace(x_start, x_end, 500, endpoint=False) w = signal.square(2 * pi * 2 * t) # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y, linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', \ fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', \ xycoords='axes fraction', textcoords='offset points', \ fontsize=20) self.widgetSignal.canvas.axis1.set_title('Square Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | def show_sweep_poly(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal p = np.poly1d([0.025, -0.36, 1.25, 2.0]) t = np.linspace(x_start, x_end, 5001) y = signal.sweep_poly(t, p) # Noise if self.rbNoise.isChecked(): y = y + np.random.randn(len(y)) * 0.1 else: y = y self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y, linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', \ fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', \ xycoords='axes fraction', textcoords='offset points', \ fontsize=20) self.widgetSignal.canvas.axis1.set_title('Sweep Poly Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y |
Run main_fft2.py. Click on Noise radio button, then choose one of signals. You will see the noisy version of each signal as shown in figures below.
Tutorial Steps To Create GUI For Noisy Signal Filtering
In gui_fft.ui, add one Combo Box widget and set its objectName property to cbFiltering. Populate this widget with two items by double clicking on the widget as shown in figure below.
Then, add two Label widgets on the form and set their text properties to pass band freq and stop band freq.
Next, add two Line Edit widgets and set their objectName properties to lePassBand and leStopBand.
Add three Widgets from Containers panel and set their objectName properties to widgetOutput, widgetFFTAbsFiltered, and widgetFFTLogFiltered.
Promote the three Widgets to gui_fft class that has been created before. The newly modified version of gui_fft.ui is shown in below.
The Object Inspector window is shown in figure below.
Define butter_filter() function to apply butterworth filtering on input signal as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | def butter_filter(self, param): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) t = linspace(x_start, x_end, len(y)) pass_band = float(self.lePassBand.text()) stop_band = float(self.leStopBand.text()) #Butterworth filtering sos = signal.butter(stop_band, pass_band, \ param, fs=1000, output='sos') filtered = signal.sosfilt(sos, y) self.widgetOutput.canvas.axis1.clear() self.widgetOutput.canvas.axis1.plot(t, filtered) self.widgetOutput.canvas.axis1.set_ylabel("$h$",fontsize=22) self.widgetOutput.canvas.axis1.set_xlabel("$sec$",fontsize=22) self.widgetOutput.canvas.axis1.set_title('Butterworth Filtered Signal') self.widgetOutput.canvas.axis1.set_facecolor('lightblue') self.widgetOutput.canvas.axis1.grid() self.widgetOutput.canvas.draw() self.show_fft(filtered,self.widgetFFTAbsFiltered,\ self.widgetFFTLogFiltered) |
Then define show_filtering() function to apply filtering based on what user choose in cbFiltering widget as follows:
1 2 3 4 5 6 7 | def show_filtering(self): strCB = self.cbFiltering.currentText() if strCB == 'Butterworth Highpass': self.butter_filter('hp') if strCB == 'Butterworth Lowpass': self.butter_filter('lp') |
Connect currentIndex signal in cbFiltering widget to show_filtering() function inside def __init__(self) method. This signal is sent whenever the currentIndex in the combobox changes through user:
self.cbFiltering.currentIndexChanged.connect(self.show_filtering)
Run main_fft2.py. Select one of signals and choose Noise radio button. Then, choose one filter from cbFiltering widget. The result is shown in figures below.
The following is full source code of main_fft2.py sow far:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | #main_fft2.py from PyQt5.QtWidgets import * from PyQt5.uic import loadUi from matplotlib.backends.backend_qt5agg import (NavigationToolbar2QT as NavigationToolbar) import numpy as np from scipy import signal from numpy import * import matplotlib as mpl from scipy.signal import chirp class DemoGUIFFT(QMainWindow): def __init__(self): QMainWindow.__init__(self) loadUi("gui_fft.ui",self) self.setWindowTitle("GUI Demo for FFT") self.pbShow.clicked.connect(self.show_graph) self.addToolBar(NavigationToolbar(self.widgetSignal.canvas, self)) self.rbChirp.toggled.connect(self.show_chirp) self.rbSawtooth.toggled.connect(self.show_sawtooth) self.rbSquare.toggled.connect(self.show_square) self.rbSweepPoly.toggled.connect(self.show_sweep_poly) self.cbFiltering.currentIndexChanged.connect(self.show_filtering) def show_graph(self): global y wc = float(self.leCutOff.text()) N = int(self.leFFTLength.text()) M = int(self.leSignalRange.text()) wc = wc*pi # widgetSignal n = arange(-M, M) h = wc/pi * sinc(wc*(n)/pi) mpl.style.use('seaborn') # Noise if self.rbNoise.isChecked(): y = y + np.random.randn(len(h)) * 0.1 else: y = h self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.stem(n,y,\ basefmt='r-',use_line_collection=True) self.widgetSignal.canvas.axis1.annotate('$n$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Stem Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y def show_fft(self, h, qwidget1, qwidget2): wc = float(self.leCutOff.text()) N = int(self.leFFTLength.text()) M = int(self.leSignalRange.text()) wc = wc*pi # widgetFFTAbs w,Hh = signal.freqz(h,1,whole=True, worN=N) # get entire frequency domain wx = fft.fftfreq(len(w)) # shift to center for plotting qwidget1.canvas.axis1.clear() qwidget1.canvas.axis1.plot(w-pi,abs(fft.fftshift(Hh)),\ color='red', linewidth=3.0) qwidget1.canvas.axis1.axis(xmax=pi/2,xmin=-pi/2) qwidget1.canvas.axis1.vlines(\ [-1.1,1.1],0,1.2,color='g',lw=2.,linestyle='--',) qwidget1.canvas.axis1.hlines(1,-pi,pi,color='g',lw=2.,linestyle='--',) qwidget1.canvas.axis1.annotate(r'$\omega$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=22) qwidget1.canvas.axis1.set_ylabel(r"$|H(\omega)| $",fontsize=22) qwidget1.canvas.axis1.set_title('Absolute FFT Graph') qwidget1.canvas.axis1.set_facecolor('lightblue') qwidget1.canvas.axis1.grid() qwidget1.canvas.draw() # widgetFFTLog w,Hh = signal.freqz(h,1,whole=True, worN=N) # get entire frequency domain wx = fft.fftfreq(len(w)) # shift to center for plotting qwidget2.canvas.axis1.clear() qwidget2.canvas.axis1.plot(w-pi,\ 20*log10(abs(fft.fftshift(Hh))),color='red', linewidth=3.0) qwidget2.canvas.axis1.axis(ymin=-40,xmax=pi/2,xmin=-pi/2) qwidget2.canvas.axis1.vlines([-wc,wc],\ 10,-40,color='g',lw=2.,linestyle='--',) qwidget2.canvas.axis1.hlines(0,-pi,pi,color='g',lw=2.,linestyle='--',) qwidget2.canvas.axis1.annotate(r'$\omega$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=22) qwidget2.canvas.axis1.set_ylabel(r"$20\log_{10}|H(\omega)| $",fontsize=18) qwidget2.canvas.axis1.set_title('Log Absolute FFT Graph') qwidget2.canvas.axis1.set_facecolor('lightblue') qwidget2.canvas.axis1.grid() qwidget2.canvas.draw() def show_chirp(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) f_start = float(self.leFStart.text()) f_end = float(self.leFEnd.text()) # widgetSignal t = linspace(x_start, x_end, 5001) w = chirp(t, f0=f_start, f1=f_end, t1=10, method='linear') # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t,y,linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Chirp Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y def show_sawtooth(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal t = linspace(x_start, x_end, 5001) w = signal.sawtooth(2 * np.pi * 5 * t) # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y,linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', xycoords='axes fraction', \ textcoords='offset points', fontsize=20) self.widgetSignal.canvas.axis1.set_title('Chirp Graph') self.widgetSignal.canvas.axis1.set_title('Sawtooth Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y def show_square(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal t = linspace(x_start, x_end, 500, endpoint=False) w = signal.square(2 * pi * 2 * t) # Noise if self.rbNoise.isChecked(): y = w + np.random.randn(len(w)) * 0.1 else: y = w self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y, linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', \ fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', \ xycoords='axes fraction', textcoords='offset points', \ fontsize=20) self.widgetSignal.canvas.axis1.set_title('Square Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y def show_sweep_poly(self): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) # widgetSignal p = np.poly1d([0.025, -0.36, 1.25, 2.0]) t = np.linspace(x_start, x_end, 5001) y = signal.sweep_poly(t, p) # Noise if self.rbNoise.isChecked(): y = y + np.random.randn(len(y)) * 0.1 else: y = y self.widgetSignal.canvas.axis1.clear() self.widgetSignal.canvas.axis1.plot(t, y, linewidth=3.0) self.widgetSignal.canvas.axis1.annotate('$sec$', xy=(0.98, 0), \ ha='left', va='top', xycoords='axes fraction', \ fontsize=20) self.widgetSignal.canvas.axis1.annotate('$h$', xy=(0, 1), \ xytext=(-15,5), ha='left', va='top', \ xycoords='axes fraction', textcoords='offset points', \ fontsize=20) self.widgetSignal.canvas.axis1.set_title('Sweep Poly Graph') self.widgetSignal.canvas.axis1.set_facecolor('lightblue') self.widgetSignal.canvas.axis1.grid() self.widgetSignal.canvas.draw() self.show_fft(y,self.widgetFFTAbs, self.widgetFFTLog) return y def butter_filter(self, param): global y x_start = float(self.leXStart.text()) x_end = float(self.leXEnd.text()) t = linspace(x_start, x_end, len(y)) pass_band = float(self.lePassBand.text()) stop_band = float(self.leStopBand.text()) #Butterworth filtering sos = signal.butter(stop_band, pass_band, param, fs=1000, output='sos') filtered = signal.sosfilt(sos, y) self.widgetOutput.canvas.axis1.clear() self.widgetOutput.canvas.axis1.plot(t, filtered) self.widgetOutput.canvas.axis1.set_ylabel("$h$",fontsize=22) self.widgetOutput.canvas.axis1.set_xlabel("$sec$",fontsize=22) self.widgetOutput.canvas.axis1.set_title('Butterworth Filtered Signal') self.widgetOutput.canvas.axis1.set_facecolor('lightblue') self.widgetOutput.canvas.axis1.grid() self.widgetOutput.canvas.draw() self.show_fft(filtered,self.widgetFFTAbsFiltered, \ self.widgetFFTLogFiltered) def show_filtering(self): strCB = self.cbFiltering.currentText() if strCB == 'Butterworth Highpass': self.butter_filter('hp') if strCB == 'Butterworth Lowpass': self.butter_filter('lp') if __name__ == '__main__': import sys app = QApplication(sys.argv) ex = DemoGUIFFT() ex.show() sys.exit(app.exec_()) |
Very Informative and creative contents. This concept is a good way to enhance knowledge. Thanks for sharing. Continue to share your knowledge through articles like these.
ReplyDeleteData Engineering Services
Data Analytics Services
Machine Learning Services
Data Modernization Services